Fuzzy Sets and Fuzzy Logic

Application

EQUENS

Sound solutions, solid results

Application

(From a press release)

Equens to offer RiskShield Fraud Protection for Card Payments

Today Equens, one of the largest pan-European card and payment Processors, announced that it has selected RiskShield from INFORM GmbH as the basis for a new approach to fraud detection and behaviour monitoring. By utilising the flexibility offered by RiskShield, Equens will be able to offer tailor-made fraud management services to issuers and acquirers.

UTRECHT, The Netherlands, 30/10/2012

Application
 - From the brochure of "RiskShield"

RiskShield

is one of the world's leading software products for risk assessment and fraud prevention. RiskShield customers are typically banks, payment and processing service providers, telecommunication and insurance companies.

Application

ADVANTAGES OF
RiskShield

Based on Fuzzy Logic

Evaluates historical data such as typical user or contractual partner behaviour

Maximum performance (decisions within milliseconds)

High transparency for decisions

Short reaction times to new risk and fraud patterns

Reduces losses due to fraud or a missing risk assessment that can amount to millions

Fuzzy sets on discrete universes

- Fuzzy set $\mathrm{C}=$ "desirable city to live in" $\mathrm{X}=\{\mathrm{SF}$, Boston, LA $\}$ (discrete and non-ordered) C $=\{($ SF, o.9), (Boston, o.8), (LA, o.6) $\}$
- Fuzzy set A = "sensible number of children" $\mathrm{X}=\{0,1,2,3,4,5,6\}$ (discrete universe) $\mathrm{A}=\{(0, .1),(1, .3),(2, .7),(3,1),(4, .6),(5, .2),(6, .1)\}$

Numberof Children

Fuzzy sets \& fuzzy logic

- Fuzzy sets can be used to define a level of truth of facts
- Fuzzy set $\mathrm{C}=$ "desirable city to live in"

$$
\begin{aligned}
& \mathrm{X}=\{\mathrm{SF}, \text { Boston, LA }\} \text { (discrete and non-ordered) } \\
& \mathrm{C}=\{(\mathrm{SF}, \mathrm{o.9}),(\text { Boston, o.8), (LA, o.6) }\}
\end{aligned}
$$

corresponds to a fuzzy interpretation in which $C(S F)$ is true with degree 0.9
C (Boston) is true with degree o. 8
$C(L A)$ is true with degree 0.6
\rightarrow membership function $\mu_{C}(x)$ can be seen as a (fuzzy) predicate.

Fuzzy logic formulas

- Membership functions: $\mu_{C}(x), \mu_{B}(x)$
- $\mathrm{B}=$ "City is beautiful"
- C="City is clean"
- Formulas: $\mu_{C}(x) \wedge \neg \mu_{B}(x), \mu_{C}(x) \vee \mu_{B}(x), \ldots$
- What is the truth value of such formulas for given x ?
- We need to define a meaning for the connectives

Fuzzy logic formulas

- Standard interpretations of connectives in fuzzy logic:
- Negation: $\quad \neg \mu_{A}(x)=1-\mu_{A}(x)$
- Conjunction: $\mu_{A}(x) \wedge \mu_{B}(y)=\min \left(\mu_{A}(x), \mu_{B}(y)\right)$
- Disjunction: $\quad \mu_{A}(x) \vee \mu_{B}(y)=\max \left(\mu_{A}(x), \mu_{B}(y)\right)$

Generalized negation

- General requirements:
- Boundary: $N(0)=1$ and $N(1)=0$
- Monotonicity: $N(a)>N(b)$ if $a<b$
- Involution: $\mathrm{N}(\mathrm{N}(\mathrm{a}))=\mathrm{a}$
- Two types of fuzzy complements:
- Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

- Yager's complement:

$$
N_{w}(a)=\left(1-a^{w}\right)^{1 / w}
$$

Sugeno's and Yager's complements

Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

(a) Sugeno's Complements

Yager's complement:
$N_{w}(a)=\left(1-a^{w}\right)^{1 / w}$
(b) Yager's Complements

Generalized intersection
 (Triangular/T-norm, logical and)

- Basic requirements:
- Boundary: $T(0, a)=T(a, 0)=0, T(a, 1)=T(1, a)=a$
- Monotonicity: $\mathrm{T}(\mathrm{a}, \mathrm{b})<=\mathrm{T}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<=\mathrm{c}$ and $\mathrm{b}<=\mathrm{d}$
- Commutativity: $\mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a})$
- Associativity: $\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))=\mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})$

Generalized intersection

(Triangular/T-norm)

- Examples:
- Minimum:
- Algebraic product:
- Bounded product:
- Drastic product:

$$
\begin{aligned}
& T(a, b)=\min (a, b) \\
& T(a, b)=a \cdot b \\
& T(a, b)=\max (0,(a+b-1)) \\
& T(a, b)=\left\{\begin{array}{ll}
a & \text { if } b=1 \\
b & \text { if } a=1 \\
0 & \text { otherwise }
\end{array}\right]
\end{aligned}
$$

T-norm operator

Generalized union (t-conorm)

- Basic requirements:
- Boundary: $S(1, a)=1, S(a, 0)=S(0, a)=a$
- Monotonicity: $\mathrm{S}(\mathrm{a}, \mathrm{b})<\mathrm{S}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<\mathrm{c}$ and $\mathrm{b}<\mathrm{d}$
- Commutativity: $S(a, b)=S(b, a)$
- Associativity: S(a, S(b, c)) = S(S(a, b), c)
- Examples:
- Maximum:
- Algebraic sum:
- Bounded sum:

$$
\begin{aligned}
& S(a, b)=\max (a, b) \\
& S(a, b)=a+b-a \cdot b \\
& S(a, b)=\min (1,(a+b))
\end{aligned}
$$

- Drastic sum

T-conorm operator

Generalized De Morgan's Law

- T-norms and T-conorms are duals which support the generalization of DeMorgan's law:

```
- T(a,b) = N(S(N(a),N(b)))
- S(a,b) = N(T(N(a),N(b)))
```


Fuzzy if-then rules

- General format: If x is A then y is B
- Examples:
- If pressure is high, then volume is small
- If a restaurant is expensive, then order small dishes
- If a tomato is red, then it is ripe
- If the speed is high, then apply the brake a little

Interpretation of Implication

Common in Fuzzy logic
A coupléd with B

Implication in
traditional logic

A entails B

A coupled with B Use the T-norm...

A entails B

- Boolean fuzzy implication (based on $\neg A \vee B$)

$$
m_{R}(x, y)=\max \left(1-m_{A}(x), m_{B}(y)\right)
$$

- Zadeh's max-min implication (based on $\neg A \vee(A \wedge B)$)

$$
m_{R}(x, y)=\max \left(1-m_{A}(x), \min \left(m_{A}(x), m_{B}(y)\right)\right)
$$

- Zadeh's arithmetic implication (based on $\neg A \vee B$)

$$
m_{R}(x, y)=\min \left(1-m_{A}(x)+m_{B}(y), 1\right)
$$

- Goguen's implication

$$
m_{R}(x, y)=\min \left(m_{B}(x) / m_{A}(y), 1\right)
$$

Fuzzy inference systems

- Given a number of fuzzy rules:
if temperature is low, then set heating high if air is dry, then set heating low
- If we do the observation temperature is 15 c , air humidity 30%
how do we set the heating?
- Discussed here: Mamdani systems

Building blocks

- Fuzzifier (in the simplest case, turn a measurement into a crisp set)
- Rule base
${ }^{-}$Inference engine
- Defuzzifier

Mamdani Systems:

 Illustration on case 1- When given are
- a fuzzy rule $A \rightarrow B$, where A and B are fuzzy sets defined by membership functions $\mu_{A}(x)$ and $\mu_{B}(y)$
- a measurement a for A
- The membership function for $\mathrm{A} \rightarrow \mathrm{B}$ is defined by $\min \left(\mu_{A}(x), \mu_{B}(y)\right)$
- For a measurement a the membership for y is $\min \left(\mu_{A}(a), \mu_{B}(y)\right)$

Mamdani Systems:

Illustration on case 2

- When rules contain multiple conditions, the min is taken over these conditions

Mamdani Systems:

Illustration on case 3

2.
min
If \mathbf{e} is Small and de is Medium
then \mathbf{u} is Small
If \mathbf{e} is Medium and de is Big then \mathbf{u} is Medium

Fuzzy observations

- Rule: if x is A then y is B
- Observation: x is A^{\prime} (fuzzy set)
- Conclusion: y is B^{\prime} (fuzzy set) defined as follows:

$$
\begin{aligned}
\mu_{B^{\prime}}(y) & =\left[\vee_{x}\left(\mu_{A^{\prime}}(x) \wedge \mu_{A}(x)\right)\right] \wedge \mu_{B}(y) \\
& =w \wedge \mu_{B}(y)
\end{aligned}
$$

Graphic Representation

- Rule: if x is A and y is B then z is C
- Fact: x is A^{\prime} and y is B^{\prime}
- Conclusion: z is C^{\prime}

Graphic Representation

Multiple rules, multiple antecedents

Defuzzification rules

- Centroid-of-area
- Bisector of area

$$
\begin{array}{r}
z^{*}=\frac{\int_{Z} \mu_{A}(z) z d z}{\int_{-\infty}^{z^{*}} \mu_{A}(z) d z=\int_{z^{*}}^{\infty} \mu_{A}(z) d z}+\frac{x^{-}(z) d z}{}
\end{array}
$$

- Mean of maximum

$$
z^{*}=\frac{\int_{Z^{\prime}} z d z}{r}, \quad Z^{\prime}=\left\{z \mid \mu_{A}(z)=\mu^{*}\right\}
$$

$$
\begin{aligned}
& \int_{Z^{\prime}} d z \\
& \operatorname{nin} z
\end{aligned}
$$

$$
z \in Z^{\prime} \checkmark
$$

range of values

- Largest of maximum
max Z
$z \in Z^{\prime}$ 」
where membership
is maximal

Mamdani - single input

- X is Small \rightarrow Y is Small
- X is Medium \rightarrow Y is Medium
- X is Large \rightarrow Y is Large

Mamdani - single input

Mamdani - double input

$\bullet \mathrm{X}$ is Small and Y is Small $\rightarrow \mathrm{Z}$ is negative Large

- X is Small and Y is Large $\rightarrow \mathrm{Z}$ is negative Small

X is Large and Y is Small $\rightarrow \mathrm{Z}$ is positive Small
${ }^{\bullet}$ if X is Large and Y is Large $\rightarrow \mathrm{Z}$ is positive Large

Mamdani - double input

